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ABSTRACT
We address the problem of liveness detection in audiovisual record-
ings for preventing spoofing attacks in biometric authentication sys-
tems. We assume that liveness is detected from a recording of a
speaker saying a predefined phrase and that another recording of the
same phrase is a priori available, a setting, which is common in text-
dependent authentication systems. We propose to measure liveness
by comparing between alignments of audio and video to the a pri-
ori recorded sequence using dynamic time warping. The alignments
are computed in a joint feature space to which audio and video are
embedded using deep convolutional neural networks. We investigate
the robustness of the proposed algorithm across datasets by training
and testing it on different datasets. Experimental results demonstrate
that the proposed algorithm generalizes well across datasets provid-
ing improved performance compared to competing methods.
Index Terms: Cross-database generalizability, Text dependent
speaker recognition, Spoofing countermeasure, Audiovisual syn-
chronization, Deep-Learning

1. INTRODUCTION

Audiovisual biometrics is an appealing technology for applications
such as mobile authentication, in which the goal is to identify a per-
son based on recordings of, e.g., his voice and face. Nowadays, even
the most basic mobile devices are equipped with a camera and a mi-
crophone which enable the capture of audiovisual content. Further-
more, the fusion of two highly uncorrelated biometrics such as face
and voice has the potential for accurate and robust authentication.

However, the abundance of mobile devices and social media in-
creases the risk of playback attacks that target the face [1] and voice
modalities. For example, an authentication system, which is merely
based on face recognition, will wrongly identify a person based on a
still image of his face, presented by an attacker. Therefore, the task
of Liveness detection, which we address in this paper, is becoming a
key factor in real life authentication systems. In the absence of spe-
cial hardware like infra-red light sources or depth cameras, it is hard
to ensure liveness. This is why in some methods the user is prompted
to express certain facial expressions, or repeat random pass-phrases,
which may lead to accuracy loss (Table 4 in [2]).

Following [3], we propose to exploit synchrony between audio
and video recordings for liveness detection. The appeal of this ap-
proach stems from the difficulty in spoofing both modalities (audio
and video) simultaneously, as opposed to spoofing each modality in-
dependently. Specifically, we consider a setting, in which a speaker
is required to say a certain phrase during an enrollment phase. Then,
during authentication, the speaker repeats the same phrase and the

two recordings are compared for liveness detection. We refer to this
problem settings as text dependent and note that is was previously
addressed in [4], where the authors suggested using Dynamic Time
Warping (DTW) [5] to find two temporal alignments which map be-
tween test and enrollment sequences, one for each modality. Then,
the difference between the audio and video mappings is used as a
measure of liveness such that the more the mappings are similar to
each other, the higher the confidences that the tested recording is au-
thentic. In this context, we also note methods e.g., [6, 7], which do
not rely on enrollment and directly measure the synchrony between
the tested audio and video sequences. The main limitation of these
methods, whether they utilize an enrollment phrase or not, stems
from the large difference between the audio and video modalities
in terms of dimensionality, value ranges, and temporal dynamics.
Therefore, it is not clear how to define their correspondence.

We propose to alleviate this problem by embedding audio and
video into a joint feature space. Such approach gains increas-
ing interest in recent years since it allows exploiting complex re-
lations between modalities. Related methods may be roughly di-
vided into non parametric approaches such as kernel based geomet-
ric methods [8–10], and parametric methods such as deep neural net-
works [11]. In this paper we take the latter utilizing a Deep Learning
(DL) framework, presented in [12]. The use of DL approaches has
led in recent years to unprecedented improvement in the accuracy of
many audiovisual tasks such as face and speaker recognition [13–15]
and lip-reading [16–18]. In the context of spoofing countermeasures,
a major challenge in the development of deep learning methods is the
lack of suitably large datasets. Till such databases are available, an
important criterion by which such algorithms should be evaluated is
their cross-database applicability [19]. Specifically, the performance
of such methods may significantly deteriorate when trained and eval-
uated on different datasets, as we show in this paper.

In this paper, we present an algorithm for liveness detection,
which is based on utilizing two convolutional neural networks, one
for each modality. These networks are specifically designed to em-
bed audio and video into a joint domain. Once embedded, the au-
dio and video of authentic recordings should appear similar to each
other. In the new domain, we compute two DTW alignments be-
tween the enrollment and authentication recordings, one for the au-
dio stream and a second for the video stream. Then, we exploit the
similarity between the audio and the video based alignments as a
measure for liveness. We demonstrate that audio and video align-
ments between the enrollment and authentication recordings are in-
deed more similar to each other in the embedded domain for authen-
tic videos, compared to domains which are designed separately for
audio and video. Then, we show that the proposed algorithm out-



performs the methods presented in [12] and [4] in terms of Equal
Error Rate (EER). Finally, we show that the proposed algorithm is
highly invariant to the training domain so that it provides signifi-
cantly higher detection scores compared to [12] when these algo-
rithms are tested on different datasets than they were trained on.

The rest of the paper is organized as follows. The proposed al-
gorithm is presented in Section 2. In Section 3, we describe the
different datasets and the experimental method and present the im-
proved performance of the proposed algorithm. Finally, we discuss
future research directions and conclude our work in Section 4.

2. ALGORITHM

2.1. Pre-processing

We process both audio and video streams in consecutive frames sim-
ilarly to [12]. The audio is represented by the Mel Frequency Cep-
stral Coefficients (MFCCs) [20], which represent the spectrum of the
signal in a compact form and are widely used in audio processing ap-
plications. We use 12 coefficient extracted at a frame rate of 100 fps
excluding the first coefficient, which corresponds to the energy of
the signal. A Voice Activity Detector (VAD) is applied prior to the
extraction of the MFCCs to detect and remove leading and trailing
silences from both audio and video streams. In the video stream,
we crop a Region of Interest (ROI) of size 120× 120 pixels around
the lips of the speaker using a face detection algorithm. Then, 20
consecutive MFCC frames and 5 corresponding video frames are
stacked together representing ≈ 200 ms long sequence. Care is
taken so that the samples span the same temporal chunk of the video.

2.2. Embedding Audio and Video Into a Joint Domain

We follow the method presented in [12] to embed the audiovisual
stacks into a joint feature space. The embedding is performed
by feeding the audio and the video stacks into two corresponding
convolutional neural networks (CNN). The audio stack is viewed
by the CNN as a single channel, two-dimensional image of size
12× 20. Similarly, the video is considered as an image with 5 chan-
nels (features) such that the tensor to the network has the size of
120× 120× 5. Both networks comprise 5 convolutional layers with
Rectified Linear Unit (ReLU) used as a non-linearity followed by
two fully connected layers. We denote the outputs of the networks
by αk ∈ RL and νk ∈ RL for the audio and the video, respectively,
where k denotes the index of the time frame, and L is set to 256. We
refer the reader to [12] for more details on the architectures of the
CNNs and on the construction of the audiovisual features.

The networks are trained using the following loss function,
which we denote by L:

L =
∑
k

yk ‖αk − νk‖+ (1− yk)max (C − ‖αk − νk‖ , 0),

(1)
where yk is an indicator which equals one for authentic pairs and
zero for spoofed, and C is a constant value. By design, the loss
function encourages the networks to learn embeddings, for which
authentic audio and video pairs are mapped close to each other, while
spoofed pairs are embedded distantly from each other. The embed-
ding of audio and video into the joint feature domain is illustrated
in fig. 1.
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Fig. 1: Embedding audio and video into a joint domain.
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Fig. 2: (a) A matrix of distances between the enrollment and tested
audio feature sequences, with the corresponding alignment path X
marked by a dashed line. (b) A matrix of distances between the en-
rollment and tested video feature sequences. The projected audio
alignment path is marked by a dashed line. The visual alignment
path Y , as calculated by the DTW method, is marked by a solid line.

2.3. Liveness measure

Similarly to [4], we propose a liveness measure based on DTW. Con-
trary to [4] our novel liveness measure is based on, first, embedding
both the enrollment and the tested sequences into the joint audio-
visual domain using the CNNs. Then we construct two pairwise
distance matrices between the enrollment and the tested sequences,
one for each modality such that the i, k-th element in each matrix
represents the Euclidean distance between the i-th enrollment frame
and the k-th tested frame. Finally, we exploit the DTW method to
find a temporal alignment path X which maps between the audio
sequences of the test and the enrollment clips. Similarly, we find a
second temporal alignment path Y that maps between the respective
video sequences as is illustrated in fig. 2.

The proposed measure of liveness, which we denote by SDTW,
is based on the Hausdorff distance, and is given by:

SDTW = max{ 1

|X|
∑
x∈X

inf
y∈Y
‖x− y‖ , 1

|Y |
∑
y∈Y

inf
x∈X
‖x− y‖ },

(2)
where a smaller SDTW refers to a higher confidence that the tested
recording is authentic. The Hausdorff distance measures how far
subsets of a metric space, in our case the alignment paths, are from
each other. It finds the maximal distance between each point in one
subset to its closest neighbor in the other set. Here we use the aver-



(a) Still image of BBC News videos (taken from [12])

(b) Still images taken from our mobile dataset

Fig. 3: Examples of datasets referenced in this work

age distance instead since we empirically found it performing better
for liveness detection than other metrics we tested.

The proposed algorithm for liveness detection allows for a
meaningful comparison both between the modalities, using the joint
audiovisual embedding and within the modalities using the dynamic
time warping algorithm. Accordingly, the similarity between the
alignment paths X and Y reliably indicates on liveness as we fur-
ther discuss in Section 3.3.

3. EXPERIMENTAL RESULTS

3.1. Datasets

The networks we use in our experiment were trained on a large
dataset compiled of BBC News programs. According to the authors
(the dataset is not publicly available) it is≈ 700 hours long, and con-
tains audiovisual samples of a large number of different people [12].
In Fig. 3a, we present an example of a single video frame taken from
the BBC News videos dataset.

As the target dataset, we use the same “mobile” dataset used
in [4]. This dataset is made of clips collected using an iPad-2 and
an iPhone-5. The dataset comprises two or three recorded sessions
for each of the 41 subjects on each device. During the sessions each
subject repeats the following phrases three times: my voice is my
password; and please verify me with the number. The dataset com-
prises 1906 recordings with average length of 1.5s. Figure 3b shows
examples of video frames taken from the target dataset.

After the preprocessing stage, which includes the cropping of
the mouth ROI, the recordings in both datasets comprise a single
front-facing speaker. Nonetheless, the datasets significantly dif-
fer from each other in the recording conditions. The BBC dataset
was captured in good lighting and sound conditions at a distance
of up to several meters between speaker and camera using profes-
sional recording equipment. The “mobile” dataset was recorded with
smartphones and tablets held at arm’s length. This setting signifi-
cantly degrades the quality of the audio signal and lighting. Also,

the short distance between speaker and camera results in consider-
able distortion of facial proportions.

3.2. Experimental Setup

We design a spoofing scenario, in which we use all the audiovisual
recordings in the “mobile” dataset as positive (authentic) examples.
For each authentic recording, we create a corresponding spoofed
recording by replacing the authentic video with a different record-
ing of the same speaker, while keeping the original audio. Accord-
ingly, the spoofed audiovisual recording comprises audio and video,
which does not correspond to each other. This challenging setting
resembles a scenario, in which an attacker is trying to spoof an au-
thentication system using an audio recording of a certain speaker
saying the correct passphrase and a different video recording of the
same speaker. In the experiments, we consider the existence of one
or three enrollment recordings. When three recordings are available,
the integrated liveness score is the minimum of the three scores.

We demonstrate the performance of the proposed algorithm in
two experiments. First, we train the proposed algorithm on the “mo-
bile” dataset such that the training data does not comprise the same
speakers as the tested data. Then, we study the ability of the pro-
posed algorithm to generalize across datasets by using the original
networks from [12] that were trained on the BBC dataset to pro-
duce the audio and video embeddings, αk and νk, respectively. In
our experiments, we compare the proposed algorithm to the methods
presented in [4] and [12]. While the method in [4] is designed for a
similar task as in this study, the method in [12] does not assume the
availability of enrollment recordings. Specifically, the authors sug-
gest measuring the synchronization between audio and video simply
using the l2 norm between the embeddings αk and νk such that the
smaller the norm the higher is the synchronization. Yet, we find it
reasonable to compare between the methods to demonstrate the con-
tribution of the DTW measure especially for the generalizability of
the proposed algorithm across datasets.

3.3. Results

We present in fig. 4 the distance matrices of the audio, authentic
video and spoofed video obtained by the method in [4], as well
as by the proposed method. The high similarity between the dis-
tance matrices of the authentic pair, obtained by the proposed algo-
rithm, demonstrates that the CNNs indeed satisfactorily map audio
and video into a joint feature domain. As a result, the correspond-
ing DTW based alignment paths, based on the audio and the video,
indeed appear more similar to each other than those obtained in [4].

The results of the first experiment are summarized in table 1
in terms of Equal Error Rate (ERR) such that the lower the ERR
the better. It can be seen that the proposed method based on three
enrollment recordings outperforms the competing methods demon-
strating the usefulness of the incorporation of CNN embeddings and
the DTW algorithm. Specifically, the audio and the video of both the
enrollment and the tested recordings are mapped into a joint domain
allowing for a reliable comparison between them, which, in turn,
leads to successful liveness detection.

In table 2, we present the results of the second experiment,
where we use versions of the CNNs pre-trained on the BBC News
dataset. The performance of the method presented in [12], which
achieves > 99% accuracy on the BBC News dataset as is reported
in [12], significantly deteriorates, when it is tested on a mismatched
dataset. In contrast, the proposed algorithm successfully generalize
between the datasets performing significantly better in this scenario.



(a) The DTW measure applied to embeddings calculated using the network in [4].

(b) The DTW measure applied in the joint audiovisual domain.

Fig. 4: Visualization of the DTW scoring method

Table 1: EERs (in %) for the networks trained on the “mobile”
dataset.

Passphrase [4] [12] (l2) SDTW SDTW 3 enrolls
(proposed) (proposed)

My voice... 4.1 0.7 1.68 0.72
Please verify... 5.1 3 2.84 0.44

Average 4.6 1.85 2.26 0.58

These results demonstrate the robustness of the DTW algorithm and
its usefulness for practical liveness detection.

4. CONCLUSIONS

We have presented an algorithm for liveness detection addressing a
challenging setting, where the spoofer comprises an audio recording
of the correct passphrase and a different video of the same speaker.
The algorithm is based on measuring the similarity between enroll-
ment and tested recordings in terms of DTW alignment paths com-
puted in a joint audio-visual domain, obtained using two convolu-
tional neural networks corresponding to the two modalities. Due to
the lack of large anti-spoofing datasets, we have considered a setting,

Table 2: EERs (in %) for the original networks (cross dataset gen-
eralizability).

Passphrase [12] (l2) SDTW SDTW 3 enrolls
(proposed) (proposed)

My voice... 32.71 2.98 1.3
Please verify... 31.07 4.39 2.49

Average 31.89 3.69 1.9

in which the CNNs are trained and tested on different datasets and
demonstrated that the proposed algorithm generalizes well across
datasets thanks to the similarity measure based on the DTW algo-
rithm. Our plans for future work include the improvement of the
joint audio-visual embeddings. Being based on CNNs, the embed-
dings do not fully capture the temporal dynamics of the audio and
the video signals, and specifically for the video CNN, the convolu-
tions are applied in the spatial domain while the consecutive frames
are merely considered different channels. Therefore, using deep ar-
chitecture such as Long Short-term Memory network (LSTM) for
obtaining the joint audio-visual representation may further improve
liveness detection.
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